(2x^2/3)+1=99

Simple and best practice solution for (2x^2/3)+1=99 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2/3)+1=99 equation:



(2x^2/3)+1=99
We move all terms to the left:
(2x^2/3)+1-(99)=0
We add all the numbers together, and all the variables
(2x^2/3)-98=0
We get rid of parentheses
2x^2/3-98=0
We multiply all the terms by the denominator
2x^2-98*3=0
We add all the numbers together, and all the variables
2x^2-294=0
a = 2; b = 0; c = -294;
Δ = b2-4ac
Δ = 02-4·2·(-294)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{3}}{2*2}=\frac{0-28\sqrt{3}}{4} =-\frac{28\sqrt{3}}{4} =-7\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{3}}{2*2}=\frac{0+28\sqrt{3}}{4} =\frac{28\sqrt{3}}{4} =7\sqrt{3} $

See similar equations:

| y=285(1+0.75)^20 | | 3/9x+5=20 | | 1/x=0.0004 | | 18=h+12 | | -16v-12-19=8(-2v+14) | | 3(x=5)+6=x-(9-2x) | | -6(4n-14)=-19n+3(-4n+7) | | 2/9x-1/9x+5=20 | | 7^2x=1/49 | | -1+20r=2r-9(-2r+15) | | 3x+25=3.75x+10 | | 5x=42+87 | | C=6b+8 | | 9q-8=46 | | x+0.66=0.25x-1 | | -5(-8-5t)=5(15+5t) | | 1+9k=5(k–3) | | x-(-9)=33 | | 45=3.14r^2 | | -5x+-10=-20 | | t−5=0 | | 16=16m | | 11x+3=(x+1)+7x | | w−(−19)=14 | | -2(-z-15)=-1+2z | | 3x+25=3.75x+25 | | -16+16b+6=2(8b+16)-13 | | w−(−19)=14. | | 4(w+1)=−6. | | 3-2x+8=24 | | 3/4(x-8=24 | | 12=a-4.2 |

Equations solver categories